题目内容

如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是(  )

 

A.

1个

B.

2个

C.

3个

D.

4个

考点:

相似三角形的判定与性质;等边三角形的判定;直角三角形斜边上的中线.

分析:

根据直角三角形斜边上的中线等于斜边的一半可判断①正确;

先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;

先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③正确;

当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=PB=PC,判断④正确.

解答:

解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,

∴PM=BC,PN=BC,

∴PM=PN,正确;

②在△ABM与△ACN中,

∵∠A=∠A,∠AMB=∠ANC=90°,

∴△ABM∽△ACN,

,正确;

③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,

∴∠ABM=∠ACN=30°,

在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,

∵点P是BC的中点,BM⊥AC,CN⊥AB,

∴PM=PN=PB=PC,

∴∠BPN=2∠BCN,∠CPM=2∠CBM,

∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,

∴∠MPN=60°,

∴△PMN是等边三角形,正确;

④当∠ABC=45°时,∵CN⊥AB于点N,

∴∠BNC=90°,∠BCN=45°,

∴BN=CN,

∵P为BC边的中点,

∴PN⊥BC,△BPN为等腰直角三角形

∴BN=PB=PC,正确.

故选D.

点评:

本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网