题目内容
如图,已知A(1,3),将线段OA绕原点O顺时针旋转90°后得到OA′,则OA′的长度是( )
A. B. 3 C. 2 D. 1
如图,已知抛物线y=x2﹣(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.
(1)求m的值;
(2)求A、B两点的坐标;
(3)当﹣3<x<1时,在抛物线上是否存在一点P,使得△PAB的面积是△ABC面积的2倍?若存在,请求出点P的坐标;若不存在,请说明理由.
用一个半径为30cm,面积为300π cm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为( )
A. 5cm B. 10cm C. 20cm D. 5πcm
如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为_______.
如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是( )
A. 55° B. 30° C. 35° D. 40°
如图,AC=DF,AD=BE,BC=EF.求证:
(1)△ABC≌△DEF;
(2)AC∥DF.
如图:BO、CO是∠ ABC,∠ ACB的两条角平分线,∠A=100°,则∠BOC的度数为_____.
如图,顶点为M的抛物线y=a(x+1)2-4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3).
(1)求抛物线的函数表达式;
(2)判断△BCM是否为直角三角形,并说明理由.
(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.
下列各对数中,互为相反数的是( )
A. -(-3)和3 B. +(-5)和-[-(-5)] C. 和-3 D. -(-7)和-|-7|