题目内容
【题目】如图,在矩形ABCD中,对角线AC的垂直平分线分别交BC、AD于点F. E,垂足为O.
(1)求证:四边形AFCE为菱形;
(2)若AB=4,BC=8,求菱形AFCE的面积.
![]()
【答案】(1)详见解析;(2)20
【解析】
(1)先证明△AOE≌△COF,得出OE=OF,再根据EF垂直平分AC,可得出四边形AFCE为菱形;
(2)设AF=x,由AB=4,BC=8,得BF=8x,根据勾股定理可得出AF的长,根据菱形的面积求解即可.
(1)证明:∵EF垂直平分AC,
∴OA=OC,
∵四边形ABCD为矩形,
∴AD∥BC,
∴∠EAO=∠FCO,∠AOE=∠COF,
在△AOE和△COF中,
∠EAO=∠FOC
AO=CO
∠AOE=∠COF,
∴△AOE≌△COF,
∴OE=OF,
∴四边形AFCE为菱形;
(2)解:设AF=x,
∵AB=4,BC=8,∴BF=8x,
∴AF2=AB2+BF2,
∴x2=42+(8x)2,
∴x=5,
∴S菱形AFCE=FCAB=5×4=20,
∴菱形面积为20.
练习册系列答案
相关题目