题目内容
如图,
(1)在平面直角坐标系中作出△ABC以点O为位似中心,位似比为2的位似图形△A′B′C′;
(2)点B′的坐标是 ( );
(3)△A′B′C′的面积是 .
李强靠勤工俭学的收入维持上大学费用,下面李强某四天的收支情况,记收入为正,支出为负(单位:元):第一天收入+15,支出10;第二天收入+18,支出14;第三天收入0,支出13;第四天收入+16,支出5;
(1)求第二天李强有多少节余?
(2)照这个情况估计,李强平均每天能有多少节余?
(3)照这个情况估计,李强一个月(按30天计算)能有多少节余?
(4)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?
如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是( )
A. 85° B. 75° C. 60° D. 45°
计算:22011-22012.
通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似地,可以在等腰三角形中建立边角之间的关系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad)如图1,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad.容易知道一个角的大小与这个角的正对值也是相互唯一确定的。根据上述角的正对定义,解答下列问题:
(1)sad= ;
(2)对于<A<,∠A的正对值sadA的取值范围 ;
(3如图2,已知sinA=,其中∠A为锐角,试求sadA的值。
如图,l1∥l2∥l3,AB=AC,DF=10,那么DE=_________________.
有一拦水坝的横截面是等腰梯形,它的上底为6米,下底为10米,高为2米,那么拦水坝斜坡的坡度和坡角分别为( )
A. B. C. D.
在平坦的草地上有A、B、C三个小球,正好可作为三角形的三个顶点,若已知A球和B球相距3米,A球和C球相距1米,则B球和C球的距离x的取值范围为___________________________。
一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字
(1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;
(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率.