题目内容
| BC |
2π
2π
cm.分析:根据切线的性质可得出OB⊥AB,继而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出答案.
解答:解:∵直线AB是⊙O的切线,
∴OB⊥AB,
又∵∠A=30°,
∴∠BOA=60°,
∵弦BC∥AO,OB=OC,
∴△OBC是等边三角形,
即可得∠BOC=60°,
∴劣弧
的长=
=2πcm.
故答案为:2π.
∴OB⊥AB,
又∵∠A=30°,
∴∠BOA=60°,
∵弦BC∥AO,OB=OC,
∴△OBC是等边三角形,
即可得∠BOC=60°,
∴劣弧
| BC |
| 60πR |
| 180 |
故答案为:2π.
点评:此题考查了弧长的计算公式、切线的性质,根据切线的性质及圆的性质得出△OBC是等边三角形是解答本题的关键,另外要熟练记忆弧长的计算公式.
练习册系列答案
相关题目