题目内容
如图,Rt△ABC 中,∠C=90°,BC=1.5,sinA=,则AB=_____.
月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)
(1)请求出y(万件)与x(元/件)之间的函数关系式;
(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.
(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.
如图a是长方形纸带,∠DEF=24°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是_______.
如图,O是坐标原点,过点A(﹣1,0)的抛物线y=x2﹣bx﹣3与x轴的另一个交点为B,与y轴交于点C,其顶点为D点.
(1)求b的值以及点D的坐标;
(2)连接BC、BD、CD,在x轴上是否存在点P,使得以A、C、P为顶点的三角形与△BCD相似.若存在,求出点P的坐标;若不存在,说明理由;
(3)动点Q的坐标为(m,1).
①当△BCQ是以BC为直角边的直角三角形时,求m的值;
②连接OQ、CQ,求△CQO的外接圆半径的最小值,并求出此时点Q的坐标.
计算:sin30°+3tan60°﹣cos245°.
一个矩形的面积为20cm,相邻两边长分别为xcm和ycm,那么y与x的关系式是( )
A. y=20x B. C. y=20﹣x D.
某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( )
A. B. C. D.
如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )
A. 30° B. 36° C. 54° D. 72°
如图所示,阴影部分正方形的面积是________.