题目内容

(2008•泰安)四边形ABCD的对角线AC、BD的长分别为m、n,可以证明当AC⊥BD时(如左图),四边形ABCD的面积S=mn,那么当AC、BD所夹的锐角为θ时(如图),四边形ABCD的面积S=    .(用含m、n、θ的式子表示)
【答案】分析:设AC、BD交于O点,在①图形中,设BD=m,OA+OC=n,所以S四边形ABCD=S△ABD+S△BDC,由此可以求出四边形的面积;
在②图形中,作AE⊥BD于E,CF⊥BD于F,由于AC、BD夹角为θ,所以AE=OA•sinθ,CF=OC•sinθ,∴S四边形ABCD=S△ABD+S△BDC=BD•AE+BD•CF=BD•(AE+CF ),由此也可以求出面积.
解答:解:如图,设AC、BD交于O点,在①图形中,设BD=m,OA+OC=n,
所以S四边形ABCD=S△ABD+S△BDC=m•OC+m•OA=mn;
在②图形中,作AE⊥BD于E,CF⊥BD于F,
由于AC、BD夹角为θ,
所以AE=OA•sinθ,CF=OC•sinθ,
∴S四边形ABCD=S△ABD+S△BDC
=BD•AE+BD•CF
=BD•(AE+CF)=mnsinθ.
故填空答案:mnsinθ.
点评:此题比较难,解题时关键要找对思路,即原四边形的高已经发生了变化,只要把高求出来,一切将迎刃而解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网