题目内容

如图:已知AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于


  1. A.
    180°
  2. B.
    270°
  3. C.
    360°
  4. D.
    450°
B
分析:根据平行线的性质可以求得:∠BAC与∠ACD,∠DCE与∠CEF的度数的和,再减去∠HEF的度数即可.
解答:∵AB∥CD,
∴∠BAC+∠ACD=180°,
同理∠DCE+∠CEF=180°,
∴∠BAC+∠ACE+∠CEF=360°;
又∵EH⊥CD于H,
∴∠HEF=90°,
∴∠BAC+∠ACE+∠CEH=∠BAC+∠ACE+∠CEF-∠HEF=360°-90°=270°.
故选B.
点评:本题主要考查了平行线的性质:两直线平行同旁内角互补.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网