题目内容
我校学生会成员的年龄如下表:则出现频数最多的年龄是( )
年 龄
13
14
15
16
人数(人)
4
5
3
A. 4 B. 14 C. 13和15 D. 2
如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.
(1)求证:四边形PMEN是平行四边形;
(2) 当AP为何值时,四边形PMEN是菱形?并给出证明。
若关于的分式方程无解,则的值为( ).
A. B. C. D.
如图,在△ABC中,AB=2,AC= ,∠BAC=105°,△ABD,△ACE,△BCF都是等边三角形,则四边形AEFD的面积为__________.
一个袋中装有3个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球, 摸到_____球的可能性最大.
如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①当AE= cm时,四边形CEDF是矩形;②当AE= cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)
在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学 习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:
(1)请估计:当实验次数很大时,摸到白球的频率将会接近 ;假如你去摸一次,你摸到红球的概率是 ;(精确到0.1).
(2)试估算口袋中红球有多少只?
一次数学活动课上,老师留下了这样一道题“任画一个△ABC,以BC的中点O为对称中心,作△ABC的中心对称图形,问△ABC与它的中心对称图形拼成了一个什么形状的特殊四边形?并说明理由.”
于是大家讨论开了,小亮说:“拼成的是平行四边形”; 小华说:“拼成的是矩形”;
小强说:“拼成的是菱形”; 小红说:“拼成的是正方形”;其他同学也说出了自己的看法……你赞同他们中的谁的观点?为什么?若都不赞同,请说出你的观点(画出图形),并说明理由.
已知x+y=6,xy=4,则x2y+xy2的值为 .