题目内容

【题目】如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)①∠ABN的度数是; ②∵AM∥BN,∴∠ACB=∠
(2)求∠CBD的度数;
(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是

【答案】
(1)120°;CBN
(2)解:∵AM∥BN,

∴∠ABN+∠A=180°,

∴∠ABN=180°﹣60°=120°,

∴∠ABP+∠PBN=120°,

∵BC平分∠ABP,BD平分∠PBN,

∴∠ABP=2∠CBP,∠PBN=2∠DBP,

∴2∠CBP+2∠DBP=120°,

∴∠CBD=∠CBP+∠DBP=60°


(3)解:不变,∠APB:∠ADB=2:1.

∵AM∥BN,

∴∠APB=∠PBN,∠ADB=∠DBN,

∵BD平分∠PBN,

∴∠PBN=2∠DBN,

∴∠APB:∠ADB=2:1


(4)30°
【解析】解:(1)①∵AM∥BN,∠A=60°, ∴∠A+∠ABN=180°,
∴∠ABN=120°;②∵AM∥BN,
∴∠ACB=∠CBN,
故答案为:120°,∠CBN;(4)∵AM∥BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
由(1)可知∠ABN=120°,∠CBD=60°,
∴∠ABC+∠DBN=60°,
∴∠ABC=30°,
故答案为:30°.
(1)由平行线的性质:两直线平行同旁内角互补和内错角相等可得;(2)由(1)知∠ABP+∠PBN=120°,再根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=120°,即∠CBD=∠CBP+∠DBP=60°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据∠ABN=120°,∠CBD=60°可得答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网