题目内容
解方程:5(| x+2 |
| x-1 |
| x-2 |
| x+1 |
| x2-4 |
| x2-1 |
分析:设
=a,
=b,原方程变形为5a2-20b2=48ab,再因式分解为(a-10b)(5a+2b)=0,求出a、b的值,代入再求x的值.
| x+2 |
| x-1 |
| x-2 |
| x+1 |
解答:解:设
=a,
=b,原方程变形为5a2-20b2=48ab,
∴(a-10b)(5a+2b)=0,
∴a-10b=0或5a+2b=0,
∴a=10b或a=-
b,
即
=
或
=-
,
解得x1=3,x2=
.
| x+2 |
| x-1 |
| x-2 |
| x+1 |
∴(a-10b)(5a+2b)=0,
∴a-10b=0或5a+2b=0,
∴a=10b或a=-
| 2 |
| 5 |
即
| x+2 |
| x-1 |
| 10(x-2) |
| x+1 |
| x+2 |
| x-1 |
| 2(x-2) |
| 5(x+1) |
解得x1=3,x2=
| 2 |
| 3 |
点评:本题考查了一元二次方程的解法,难度比较大.
练习册系列答案
相关题目