题目内容
如图所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是cm,那么这个的圆锥的高是
A.4cm B.6cm C.8cm D.2cm
将一副直角三角板(Rt△ABC和Rt△DEF),按图1所示的方式摆放,∠ACB=90°,CA=CB,∠FDE=90°,O是AB中点,D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并写出证明过程。
小宇同学展示出如下正确的解法:
解OM=ON,
证明:连OC,则OC是斜边AB上中线:
∵CA=CB,
∴OC是∠ACB的平分线(依据1);
∵OM⊥AC,ON⊥BC;
∴OM=ON(依据2)
(1)上述证明过程中的“依据1”“依据2”分别是指:依据1_____依据2______。
(2)你有与小宇不同的思考方法吗?请写出你的证明过程:
(3)将图(1)中的Rt△DEF沿着射线BA方向平移至图(2)所示的图形位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于N,连接OM、ON,试判断线段OM、ON的数量关系和位置关系,并写出证明过程。
图(1)是边长为(a+b)的正方形,将图(1)中的阴影部分拼成图(2)的形状, 由此能验证的式子是( )
A、(a+b)(a-b)=a2-b2
B、(a+b)2-(a2+b2)=2ab
C、(a+b)2-(a-b)2=4ab
D、(a-b)2+2ab=a2+b2
如图,等腰三角形ABC的直角边长为a,正方形MNPQ的边为b (a<b),C、M、A、N在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点C与点N重合。设三角形与正方形的重合面积为y,点A移动的距离为x, 则y关于x的大致图像是
如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为
A. B. C. D.
下列图形中,既是轴对称图形又是中心对称图形的图形的个数有
A.1个 B.2个 C.3个 D.4个
2009年首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )
已知x=5是一元二次方程x2-3x+c=0的一个根,则另一个根为 .