题目内容

(12分)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点DAC边上一点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.

1.(1)当x=  ▲  s时,DEAB

2.(2)求在点E运动过程中,yx之间的函数关系式及点F运动路线的长;

3.(3)当△BEF为等腰三角形时,求x的值.

 

 

1.(1)

2.(2)∵在△ABC中,∠C=90°,AC=BC=4.

∴∠A=∠B=45°,AB=4,∴∠ADE+∠AED=135°;

又∵∠DEF=45°,∴∠BEF+∠AED=135°,∴∠ADE=∠BEF

∴△ADE∽△BEF············································································································ 4分

∴=,

∴=,∴y=-x2+x······································································ 5分

∴y=-x2+x=-(x2)2+

∴当x=2时,y有最大值=·················································································· 6分

∴点F运动路程为cm································································································ 7分

 

 

 

 

 

 

 

 

 

 

 


3.(3)这里有三种情况:

①如图,若EFBF,则∠B=∠BEF

又∵△ADE∽△BEF,∴∠A=∠ADE=45°

∴∠AED=90°,∴AEDE=,

∵动点E的速度为1cm/s ,∴此时x=s;

②如图,若EFBE,则∠B=∠EFB

又∵△ADE∽△BEF,∴∠A=∠AED=45°

∴∠ADE=90°,∴AE=3,

∵动点E的速度为1cm/s

∴此时x=3s;

 

 

 

 

 

 

 

 

 

 


③如图,若BFBE,则∠FEB=∠EFB

又∵△ADE∽△BEF,∴∠ADE=∠AED

AEAD=3,

∵动点E的速度为1cm/s

∴此时x=3s;

综上所述,当△BEF为等腰三角形时,x的值为s或3s或3s.

(注:求对一个结论得2分,求对两个结论得4分,求对三个结论得5分)

 

解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网