题目内容
如图,已知AD=AE,请你添加一个条件使△ABE ≌ △ACD,你添加的条件是_________________(填一个即可).
如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=,则S阴影=( )
A. 2π B. π C. π D. π
解分式方程:
如图1,点A、B在直线上,点C、D在直线上,AE平分∠BAC,CE平分∠ACD,
∠EAC+∠ACE=90° .
(1)请判断与的位置关系并说明理由;
(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.
先化简,再求值.已知,求代数式的值.
有理数,在数轴上的对应点的位置如图所示,则正确的结论是( )
A. B. C. D.
阅读下列材料:
我们知道的几何意义是在数轴上数对应的点与原点的距离,即=,也就是说,表示在数轴上数与数0对应的点之间的距离;这个结论可以推广为表示在数轴上数与数对应的点之间的距离;
例1.解方程||=2.因为在数轴上到原点的距离为2的点对应的数为,所以方程||=2的解为.
例2.解不等式|-1|>2.在数轴上找出|-1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|-1|=2的解为=-1或=3,因此不等式|-1|>2的解集为<-1或>3.
例3.解方程|-1|+|+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的对应的点在1的右边或-2的左边.若对应的点在1的右边,可得=2;若对应的点在-2的左边,可得=-3,因此方程|-1|+|+2|=5的解是=2或=-3.
参考阅读材料,解答下列问题:
(1)方程|+3|=4的解为 ;
(2)解不等式:|-3|≥5;
(3)解不等式:|-3|+|+4|≥9
在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是
A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形
如图,已知正方形ABCD的对角线交于O点,点E,F分别是AO,CO的中点,连接BE,BF,DE,DF,则下列结论中一定成立的是________.(把所有正确结论的序号都填在横线上)
①BF=DE;②∠ABO=2∠ABE;③S△AED=S△ACD;④四边形BFDE是菱形.