题目内容
如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣
x+b交折线OAB于点E.
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.
| 解:(1)∵四边形OABC是矩形, 点A、C的坐标分别为(3,0),(0,1), ∴B(3,1), 若直线经过点A(3,0)时,则b= 若直线经过点B(3,1)时,则b= 若直线经过点C(0,1)时,则b=1. ①若直线与折线OAB的交点在OA上时,即1<b≤ 如图1,此时E(2b,0), ∴S= ②若直线与折线OAB的交点在BA上时,即 此时E(3, ∴S=S矩﹣(S△OCD+S△OAE+S△DBE) =3﹣[ = ∴ (2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积. 由题意知,DM∥NE,DN∥ME, ∴四边形DNEM为平行四边形, 根据轴对称知:∠MED=∠NED, 又∵∠MDE=∠NED, ∴∠MED=∠MDE, ∴MD=ME, ∴平行四边形DNEM为菱形. 过点D作DH⊥OA,垂足为H, 由题意知,D(2b﹣2,1),E(2b,0), ∴DH=1,HE=2b﹣(2b﹣2)=2, ∴HN=HE﹣NE=2﹣a, 设菱形DNEM的边长为a,则在Rt△DHN中, 由勾股定理知:a2=(2﹣a)2+12, ∴a= ∴S四边形DNEM=NE·DH= ∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为 |
练习册系列答案
相关题目