题目内容
已知反比例函数
,当
时,y=-4,若一次函数y=mx-2的图象与反比例函数
的图象有交点,则m的取值范围是
- A.
且m≠0 - B.m>

- C.
且m≠0 - D.无法确定
A
分析:先将
时,y=-4,代入反比例函数
,求出解析式,再根据函数的图象有交点,用一元二次方程根的判别式可解.
解答:当
时,y=-4,代入反比例函数
,
则有k=3,
故反比例函数为y=
.
由联立方程组
,
有mx-2=
,即mx2-2x-3=0.
要使两个函数的图象有交点,须使方程mx2-2x-3=0有实数根.
∴△=22+12m=4+12m≥0,且m≠0
解得
,且m≠0.
故选A.
点评:本题综合考查反比例函数与方程组的相关知识点.先由点的坐标求函数解析式,然后解由解析式组成的方程组求出交点的坐标,体现了数形结合的思想.
分析:先将
解答:当
则有k=3,
故反比例函数为y=
由联立方程组
有mx-2=
要使两个函数的图象有交点,须使方程mx2-2x-3=0有实数根.
∴△=22+12m=4+12m≥0,且m≠0
解得
故选A.
点评:本题综合考查反比例函数与方程组的相关知识点.先由点的坐标求函数解析式,然后解由解析式组成的方程组求出交点的坐标,体现了数形结合的思想.
练习册系列答案
相关题目