题目内容
(a+b)2=100,ab=20,求:(1)a2+b2,(2)a2-b2的值.分析:(1)利用完全平方公式把(a+b)2=100展开,再把ab=20代入,即可求出答案;
(2)根据(1)中所求式子的值得出(a2+b2)2的值,再根据(a2-b2)2=(a2+b2)2-4a2b2进行解答即可.
(2)根据(1)中所求式子的值得出(a2+b2)2的值,再根据(a2-b2)2=(a2+b2)2-4a2b2进行解答即可.
解答:解:(1)∵(a+b)2=100,ab=20,
∴a2+b2+2ab=100,
即a2+b2=60;
(2)∵a2+b2=60,
∴(a2+b2)2=3600;
∴(a2-b2)2
=(a2+b2)2-4a2b2
=3600-4×400
=2000,
∴a2-b2=±
=±20
.
故答案为:60;±20
.
∴a2+b2+2ab=100,
即a2+b2=60;
(2)∵a2+b2=60,
∴(a2+b2)2=3600;
∴(a2-b2)2
=(a2+b2)2-4a2b2
=3600-4×400
=2000,
∴a2-b2=±
| 2000 |
| 5 |
故答案为:60;±20
| 5 |
点评:本题考查的是完全平方公式,能根据题意得出a2+b2=60是解答此题的关键.
练习册系列答案
相关题目