题目内容

如图10-1-2(1),10-1-2(2),四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。
【小题1】如图10-1-2(1),当点E在AB边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是         
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是             
③请证明你的上述两猜想。
【小题2】如图10-1-2(2),当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系。

【小题1】①DE=EF;②NE=BF③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,∴DN=EB∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF∴△DNE≌△EBF∴ DE=EF,NE=BF
【小题2】在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)  
此时,DE=EF解析:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网