题目内容
如图,抛物线y=﹣x2+bx+c经过坐标原点,并与x轴交于点A(2,0).
(1)求此抛物线的解析式;
(2)若抛物线上有一点B,且S△OAB=8,请直接写出点B的坐标.
若a<b,则可化简为________.
已知,如图,△ABC中,∠C>∠B,AD⊥BC于D,AE平分∠BAC.
求证:∠DAE=(∠C-∠B).
植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x人,女生有y人,根据题意,下列方程组正确的是( )
A. B. C. D.
某农场的一个开发商准备开发建设甲、乙两种户型的楼房,甲种楼房每套造价12万元,售价14.5万元;乙种楼房每套造价8万元,售价10万元,且它们的造价和售价始终不变.现准备建造甲、乙两种楼房共20套,所用资金不低于190万元,不高于200万元.
(1)该开发商有哪几种建造方案?
(2)该开发商采用哪种建造方案可获得最大利润?最大利润是多少?
(3)若用(2)中所求得的利润再次建造楼房,请直接写出获得最大利润的建造方案.
如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),求该光盘的直径是多少?
如图,已知二次函数y=ax2+bx+c(a≠0)图象过点(﹣1,0),顶点为(1,2),则结论:
①abc>0;②x=1时,函数最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.
其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
(1)
(2)20132﹣2012×2014(简便计算)
(3)(3a2)3+a2•a4﹣a8÷a2
(4)(x﹣2)(3x﹣1)
(5)(x﹣1)(x+1)﹣(x+2)2
(6)(a+3b﹣2c)(a﹣3b﹣2c)
(7)(m﹣2n+1)2
(8)(2a﹣3b)2(2a+3b)2 .
若一个正多边形的一个外角是45°,则这个正多边形的边数是( )
A. 5 B. 6 C. 7 D. 8