题目内容

24、如图,直线y=x+3与坐标轴分别交于A,B两点,抛物线y=ax2+bx-3a经过点A,B,顶点为C,连接CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称.
(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形.
分析:(1)先根据直线y=x+3求得点A与点B的坐标,然后代入二次函数的解析式求得其解析式,然后求得其顶点坐标即可;
(2)根据B、D关于MN对称,C(-1,4),B(0,3)求得点D的坐标,然后得到AD与BC不平行,∴四边形ABCD是梯形,再根据∠ABC=90°得到四边形ABCD是直角梯形.
解答:解:(1)由y=x+3与坐标轴分别交与A、B两点,易得A点坐标(-3,0)、
B点坐标(0,3)
∵抛物线y=ax2+bx-3a经过A、B两点
∴9a-3b-3a=0a=-1-3a=3得:b=-2
∴抛物线解析式为:y=-x2-2x+3
∴顶点C的坐标为(-1,4)

(2)∵B、D关于MN对称,C(-1,4),B(0,3)
∴D(-2,3)
∵B(3,0),A(-3,0)
∴OA=OB
又∠AOB=90°
∴∠ABO=∠BAO=45°
∵B、D关于MN对称
∴BD⊥MN
又∵MN⊥X轴
∴BD∥X轴
∴∠DBA=∠BAO=45°
∴∠DBO=∠DBA+∠ABO=45°+45°=90°
∴∠ABC=180°-∠DBO=90°
∴∠CBD=∠ABC-∠ABD=45°
∵CM⊥BD
∴∠MCB=45°
∵B,D关于MN对称
∴∠CDM=∠CBD=45°,CD∥AB
又∵AD与BC不平行
∴四边形ABCD是梯形
∵∠ABC=90°
∴四边形ABCD是直角梯形.
点评:本题考查了二次函数的综合知识,特别题目中涉及到的对称点的问题,更是近几年中考中的常见知识点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网