题目内容
如图所示,∠1=∠2,AE∥BC,求证:△ABC是等腰三角形.
证明:∵AE∥BC(已知),
∴∠2=∠C(两直线平行,内错角相等).
∠1=∠B(两直线平行,同位角相等).
∵∠1=∠2(已知),
∴∠B=∠C(等量代换).
∴AB=AC.
∴△ABC是等腰三角形(等角对等边).
分析:由平行线的性质可得∠2=∠C,∠1=∠B,已知∠1=∠2,从而推出∠B=∠C,根据等角对等边可得到AB=AC,即△ABC是等腰三角形.
点评:此题主要考查平行线的性质及等腰三角形的判定;进行角的等量代换是正确解答本题的关键.
∴∠2=∠C(两直线平行,内错角相等).
∠1=∠B(两直线平行,同位角相等).
∵∠1=∠2(已知),
∴∠B=∠C(等量代换).
∴AB=AC.
∴△ABC是等腰三角形(等角对等边).
分析:由平行线的性质可得∠2=∠C,∠1=∠B,已知∠1=∠2,从而推出∠B=∠C,根据等角对等边可得到AB=AC,即△ABC是等腰三角形.
点评:此题主要考查平行线的性质及等腰三角形的判定;进行角的等量代换是正确解答本题的关键.
练习册系列答案
相关题目
| A、m>3 | B、m<3 | C、0≤m≤3 | D、0<m<3 |