题目内容
太阳的半径约为696000千米,用科学记数法表示为_______千米.
如图,AB∥CD,∠A+∠E=75°,则∠C为( )
A、60° B.65° C.75° D.80°
图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,
无缝隙)。图乙种,,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离
相等的平行线交叉得到,则该菱形的周长为 cm
(本小题满分11分)如图,E、F分别是正方形ABCD的边DC、CB上的点,且DE=CF,以AE为边作正方形AEHG,HE与BC交于点Q,连接DF.
(1)求证:△ADE≌△DCF;
(2)若E是CD的中点,求证:Q为CF的中点;
(3)连接AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.
已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为_____________________.
如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-的点P应落在线段( )
A.AO上 B.OB上 C.BC上 D.CD上
(本小题满分14分)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.
(1)试探究筝形对角线之间的位置关系,并证明你的结论;
(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8.
①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在, 请说明理由;
②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB 的距离.
已知满足方程组,则的值为( )
(A)-4 (B)4 (C)-2 (D)2
在平面直角坐标系中一个长方形三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为( )
A.(2,2)
B.(3,2)
C.(3,3)
D.(2,3)