搜索
题目内容
写出一个在
与
之间的无理数________.
试题答案
相关练习册答案
分析:先计算(
)
2
=
=11,(
)
2
=
,由于11<13<
,则在
与
之间的无理数可为
.
解答:∵(
)
2
=
=11,(
)
2
=
,
而11<13<
,
∴(
)
2
<
<(
)
2
.
故答案为
.
点评:本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.
练习册系列答案
名校课堂系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
相关题目
11、读一读,想一想,做一做:
(1)国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.
①在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.
②如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互相不受对方控制(在图丙中的某四个小方格中标出字母Q即可).
3
(2)现有足够的2×2,3×3的正方形和2×3的矩形图片A、B、C(如图),现从中各选取若干个图片拼成不同的图形.请你在下面给出的方格纸中,按下列要求分别画出一种拼法示意图(说明:下面给出的方格纸中,每个小正方形的边长均为1.拼出的图形,要求每两个图片之间既无缝隙,也不重叠.画图必须保留拼图的痕迹).
①选取A型、B型两种图片各1块,C型图片2块,在下面的图1中拼成一个正方形;
②选取A型图片4块,B型图片1块,C型图片4块,在下面的图2中拼成一个正方形;
③选取A型图片3块,B型图片1块,再选取若干块C型图片,在下面的图3中拼成一个矩形.
(2011•南岗区二模)在综合实践课上,小明要用如图所示的矩形硬纸板做一个装垃圾的无盖纸盒.已知这张矩形硬纸板ABCD边AB的长是40cm,边AD的长是20cm,裁去角上四个小正方形之后,就可以折成一个无盖纸盒.设这个无盖纸盒的底面矩形EFMN的面积是y(单位:cm
2
),纸盒的高是x(单位:cm).
(1)求出y与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据老师要求,小明做的无盖纸盒的高x不能超过宽EF且纸盒的底面矩形EFMN的面积y等于300cm
2
,求纸盒高的最大整数值x是多少cm?
(2013•香坊区一模)如图,在一个边长为40厘米的正方形硬纸板的四角各剪一个边长为xcm的小正方形,将剩余部分折成一个无盖的长方体盒子(纸板的厚度忽略不计),设折成的长方体盒子的侧面积为Scm
2
.
(1)请直接写出S与x之间函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,这个折成的长方体盒子的侧面积S最大?最大侧面积是多少?
【参考公式:当x=-
b
2a
时,二次函数y=ax
2
+bx+c(a≠0)有最小(大)值
4ac-
b
2
4a
】
在综合实践课上,小明要用如图所示的矩形硬纸板做一个装垃圾的无盖纸盒.已知这张矩形硬纸板ABCD边AB的长是40cm,边AD的长是20cm,裁去角上四个小正方形之后,就可以折成一个无盖纸盒.设这个无盖纸盒的底面矩形EFMN的面积是y(单位:cm
2
),纸盒的高是x(单位:cm).
(1)求出y与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据老师要求,小明做的无盖纸盒的高x不能超过宽EF且纸盒的底面矩形EFMN的面积y等于300cm
2
,求纸盒高的最大整数值x是多少cm?
在综合实践课上,小明要用如图所示的矩形硬纸板做一个装垃圾的无盖纸盒.已知这张矩形硬纸板ABCD边AB的长是40cm,边AD的长是20cm,裁去角上四个小正方形之后,就可以折成一个无盖纸盒.设这个无盖纸盒的底面矩形EFMN的面积是y(单位:cm
2
),纸盒的高是x(单位:cm).
(1)求出y与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据老师要求,小明做的无盖纸盒的高x不能超过宽EF且纸盒的底面矩形EFMN的面积y等于300cm
2
,求纸盒高的最大整数值x是多少cm?
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案