题目内容
如图甲,直线PA交⊙O于A、E两点,PA的垂线CD切⊙O于点C,过点A作⊙O的直径AB.
(1)求证:AC平分∠DAB;
(2)如图乙,将直线CD向下平行移动,得到CD与⊙O相切于C,AC还平分∠DAB吗?说明理由;
(3)在将直线CD向下平行移动的过程中,如图丙、丁,试指出与∠DAC相等的角(不要求证明).

(1)求证:AC平分∠DAB;
(2)如图乙,将直线CD向下平行移动,得到CD与⊙O相切于C,AC还平分∠DAB吗?说明理由;
(3)在将直线CD向下平行移动的过程中,如图丙、丁,试指出与∠DAC相等的角(不要求证明).
(1)证明:连接OC,
∵OA、OC是⊙O的半径,
∴OA=OC,得∠OAC=∠OCA.
∵CD切⊙O于点C,
∴CD⊥OC.
又∵CD⊥PA,
∴OC∥PA,于是得∠PAC=∠OCA.
故∠OAC=∠PAC,表明AC平分∠DAB;
(2)AC平分∠DAB,连接OC,
∵CD切⊙O于C,
∴CD⊥OC.
又∵AD⊥CD,
∴OC∥AD,于是得∠COB=∠DAB.
而OA=OC,所以∠CAO=∠ACO.
因此∠DAC=∠ACO=∠CAO,表明AC平分∠DAB;
(3)∠DAC=∠BAF,
证明:(丁图),可连接BC、BF,
直角三角形DAF中,∠DAC+∠CAF+∠CFA=90°,
直角三角形BFA中∠ABC+∠CBF+∠BAF=90°,
又因为∠CFA=∠ABC,∠CAF=∠CBF,
所以∠DAC=∠BAF.
练习册系列答案
相关题目