题目内容
如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为
- A.5
- B.10
- C.20
- D.40
C
分析:根据中位线定理可得BC=2DF,AC=2DE,AB=2EF,继而结合△DEF的周长为10,可得出△ABC的周长.
解答:∵D、E、F分别为△ABC三边的中点,
∴DE、DF、EF都是△ABC的中位线,
∴BC=2DF,AC=2DE,AB=2EF,
故△ABC的周长=AB+BC+AC=2(DF+FE+DE)=20.
故选C.
点评:此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.
分析:根据中位线定理可得BC=2DF,AC=2DE,AB=2EF,继而结合△DEF的周长为10,可得出△ABC的周长.
解答:∵D、E、F分别为△ABC三边的中点,
∴DE、DF、EF都是△ABC的中位线,
∴BC=2DF,AC=2DE,AB=2EF,
故△ABC的周长=AB+BC+AC=2(DF+FE+DE)=20.
故选C.
点评:此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.
练习册系列答案
相关题目
| A、EF与AD互相平分 | ||
B、EF=
| ||
| C、AD平分∠BAC | ||
| D、△DEF∽△ACB |
| A、AD平分∠BAC | ||
B、EF=
| ||
| C、EF与AD互相平分 | ||
| D、△DFE是△ABC的位似图形 |