题目内容

14.Rt△ABC中,∠C=90°.
(1)如果BC=9,AC=12,那么AB=15;
(2)如果BC=8,AB=10,那么AC=6.

分析 (1)先根据题意画出图形,可知AC为Rt△ABC的一个直角边,另一直角边BC=12,根据勾股定理即可求出AB的长.
(2)解题思路同(1).

解答 解:(1)如图所示:
可知AC为Rt△ABC的一个直角边,
在Rt△ABC中,
根据勾股定理有:AC2+BC2=AB2,即92+122=AB2
解得:AB=15,
故答案为:15;
(2)由勾股定理可得:AC2+BC2=AB2,即AC2+82=102
解得:AC=6,
故答案为:6.

点评 本题考查勾股定理的知识,属于基础题,比较容易解答,根据题意画出图形找出AC为直角边是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网