题目内容
(2015秋•鞍山期末)如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,AD∥BC,连结OD,AC.
(1)求证:∠B=∠DCA;
(2)若tanB=,OD=,求⊙O的半径长.
解方程:.
△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位得到,再作关于x轴对称的图形,则顶点的坐标是( )
A.(-3,-2) B.(2,-3) C.(-2,3) D.(-2,-3)
若,则代数式的值为____________
已知都在反比例函数的图象上,若,则的值为 .
(2015秋•徐州校级月考)如图,在平面直角坐标系中,面积为16cm2的正方形AOBC的边OA、OB分别在y轴、x轴上,点P在x轴上自左向右运动,连接PA,将PA绕点P顺时针旋转90°到PD,连接DB,设PO=xcm.
(1)OA= cm;
(2)在点P运动的过程中,△PDB的面积可以达到正方形面积的吗?若能,请求出x的值;若不能,请说明理由.
(3)连接AB,当点P在OB边上(不含点O、B)运动时,以点A为圆心、以AB为半径的圆与△PDB的边DB相切吗,为什么?
(2014秋•渝中区校级期末)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B.点为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C.过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N.记AP=x,△PBC的面积为S.
(1)当点C在第一象限时,求证:△OPM≌△PCN;
(2)当点P在线段AB上移动时,点C也随之在直线x=1上移动,求出S与x之间的函数关系式,并写出自变量的取值范围;
(3)当点P在线段AB上移动时,△PBC是否可能成为等腰三角形?如果可能,直接写出所有能使△PBC成为等腰三角形的x的值;如果不可能,请说明理由.
(2015•丰台区二模)某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. B. C. D.
下列各组单项式中,为同类项的是:
A、与 B、与 C、与 D、-3与-a