题目内容
把0.22×105改成科学记数法的形式,正确的是( )
A.2.2×103 b B.2.2×104 b C.2.2×105 b D.2.2×106
肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为( )
A. 0.7×10﹣3 B. 7×10﹣3 C. 7×10﹣4 D. 7×10﹣5
因式分【解析】x2﹣4= .
计算:(﹣2)2×(1﹣).
已知M、N、P、Q四点的位置如图所示,下列结论中,正确的是( )
A.∠NOQ=42° B.∠NOP=132°
C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补
已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.
(1)求k的取值范围;
(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;
(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.
请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).
问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD.AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于( )
A. 10 B. 8 C. 6或10 D. 8或10