题目内容
已知二次函数y=ax2+bx+c(a≠0)的图象经过一次函数y=-
x+3的图象与x轴、y轴的交点,并且经过点(1,1),求这个二次函数的关系式.
解:由y=-
x+3的图象与x轴、y轴的交点,并且经过点(1,1),
令x=0,得y=3;
令y=0,得x=2
∴二次函数图象经过(0,3),(2,0),(1,1)三点,
把(0,3),(2,0),(1,1)分别代入y=ax2+bx+c,
得
,
解得
∴所求二次函数关系式为y=
.
分析:由题意先设出二次函数的解析式:y=ax2+bx+c,一次函数y=-
x+3的图象与x轴、y轴的交点在二次函数图象上,分别令一次函数x=0,y=0求出其与x轴、y轴的交点,再根据点(1,1)也在二次函数图象上,把三点代入二次函数的解析式,用待定系数法求出二次函数的解析式.
点评:此题主要考查一次函数和二次函数的基本性质,一次函数与x轴、y轴的交点坐标,用待定系数法求出二次函数的解析式.
令x=0,得y=3;
令y=0,得x=2
∴二次函数图象经过(0,3),(2,0),(1,1)三点,
把(0,3),(2,0),(1,1)分别代入y=ax2+bx+c,
得
解得
∴所求二次函数关系式为y=
分析:由题意先设出二次函数的解析式:y=ax2+bx+c,一次函数y=-
点评:此题主要考查一次函数和二次函数的基本性质,一次函数与x轴、y轴的交点坐标,用待定系数法求出二次函数的解析式.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
| x | -0.1 | -0.2 | -0.3 | -0.4 |
| y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |