题目内容
分式的计算:
①
-
②
-
+a+b
③a-2b2(a2b-2)-3
④
÷(x+2-
)
⑤
-
⑥(
a)-2b2(2a2b-2)-1.
①
| a |
| a2-b2 |
| 1 |
| a+b |
②
| b2 |
| a-b |
| a2 |
| b-a |
③a-2b2(a2b-2)-3
④
| 3-x |
| 2x-4 |
| 5 |
| x-2 |
⑤
| 3b-a |
| a2-b2 |
| a+2b |
| a-b |
⑥(
| 1 |
| 2 |
分析:①首先通分,然后进行分式的减法运算即可求解;
②首先通分,化成同分母的分式的加减,然后进行分式的减法运算即可求解;
③首先计算乘方,然后进行乘法运算即可求解;
④首先把括号内的分式通分相加,然后把除法转化成乘法,然后进行乘法即可求解;
⑤首先通分,化成同分母的分式的加减,然后进行分式的减法运算即可求解;
⑥首先计算乘方,然后进行乘法运算即可求解.
②首先通分,化成同分母的分式的加减,然后进行分式的减法运算即可求解;
③首先计算乘方,然后进行乘法运算即可求解;
④首先把括号内的分式通分相加,然后把除法转化成乘法,然后进行乘法即可求解;
⑤首先通分,化成同分母的分式的加减,然后进行分式的减法运算即可求解;
⑥首先计算乘方,然后进行乘法运算即可求解.
解答:解:①原式=
-
=
=
;
②原式=
+
+
=
=
;
③原式=a-2 b2•a-6 b6
=a-8 b8;
④原式=
÷[
-
]
=
÷
=
÷
=
•
=-
;
⑤原式=
-
=
=
;
⑥原式=4a-2 b2•
a-2 b2
=2a-4 b4
=
.
| a |
| (a+b)(a-b) |
| a-b |
| (a+b)(a-b) |
=
| a-(a-b) |
| (a+b)(a-b) |
=
| b |
| (a+b)(a-b) |
②原式=
| b2 |
| a-b |
| a2 |
| a-b |
| (a+b)(a-b) |
| a-b |
=
| a2+b2+(a2-b2) |
| a-b |
=
| 2a2 |
| a-b |
③原式=a-2 b2•a-6 b6
=a-8 b8;
④原式=
| 3-x |
| 2(x-2) |
| (x+2)(x-2) |
| x-2 |
| 5 |
| x-2 |
=
| 3-x |
| 2(x-2) |
| x2-4-5 |
| x-2 |
=
| 3-x |
| 2(x-2) |
| (x+3)(x-3) |
| x-2 |
=
| 3-x |
| 2(x-2) |
| 2(x-2) |
| (x+3)(x-3) |
| 1 |
| x+3 |
⑤原式=
| 3b-a |
| (a+b)(a-b) |
| (a+2b)(a+b) |
| (a+b)(a-b) |
=
| 3b-a-(a2+ab+2ab+2b2) |
| (a+b)(a-b) |
=
| 3b-a-a2+3ab-2b2 |
| (a+b)(a-b) |
⑥原式=4a-2 b2•
| 1 |
| 2 |
=2a-4 b4
=
| 2b4 |
| a4 |
点评:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.
练习册系列答案
相关题目