题目内容
如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1,l2,l3之间的距离为3,则点B到AC的距离是
- A.5
- B.

- C.

- D.

C
分析:过A作AD⊥l3于D,过B作BF⊥AC于F,过C作CE⊥l3于E,则BF的长就是点B到AC的距离,根据AAS证△DAB≌△EBC,求出BE=3,根据勾股定理求出BC、AB、AC,根据三角形的面积即可求出答案.
解答:
过A作AD⊥l3于D,过B作BF⊥AC于F,过C作CE⊥l3于E,则BF的长就是点B到AC的距离
∵AD⊥l3,CE⊥l3,
∴∠ADB=∠ABC=∠CEB=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△DAB和△EBC中
,
∴△DAB≌△EBC,
∴AD=BE=3,
∵CE=3+1=4,
在△CEB中,由勾股定理得:AB=BC=5,AC=5
,
由三角形的面积公式得:S△ABC=
AB×BC=
AC×BF,
即5×5=5
BF,
即BF=
,
故选C.
点评:本题考查了全等三角形的性质和判定,三角形的面积,等腰直角三角形,勾股定理等知识点的应用,关键是正确作辅助线后能求出BE、AB、BC、AC的长,主要考查了学生的推理能力和计算能力.
分析:过A作AD⊥l3于D,过B作BF⊥AC于F,过C作CE⊥l3于E,则BF的长就是点B到AC的距离,根据AAS证△DAB≌△EBC,求出BE=3,根据勾股定理求出BC、AB、AC,根据三角形的面积即可求出答案.
解答:
过A作AD⊥l3于D,过B作BF⊥AC于F,过C作CE⊥l3于E,则BF的长就是点B到AC的距离
∵AD⊥l3,CE⊥l3,
∴∠ADB=∠ABC=∠CEB=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△DAB和△EBC中
∴△DAB≌△EBC,
∴AD=BE=3,
∵CE=3+1=4,
在△CEB中,由勾股定理得:AB=BC=5,AC=5
由三角形的面积公式得:S△ABC=
即5×5=5
即BF=
故选C.
点评:本题考查了全等三角形的性质和判定,三角形的面积,等腰直角三角形,勾股定理等知识点的应用,关键是正确作辅助线后能求出BE、AB、BC、AC的长,主要考查了学生的推理能力和计算能力.
练习册系列答案
相关题目