题目内容
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③4a-2b+c<0.正确序号为________.
②③
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,
∴c>0,对称轴为0<x=
<1,得2a<-b,
∴2a+b<0,
∴a、b异号,即b>0,
∴abc<0;
当x=-2时,由图象可知:4a-2b+c<0,
故②③正确,
故答案为:②③.
点评:主要考查图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a-b+c,然后根据图象判断其值.
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,
∴c>0,对称轴为0<x=
∴2a+b<0,
∴a、b异号,即b>0,
∴abc<0;
当x=-2时,由图象可知:4a-2b+c<0,
故②③正确,
故答案为:②③.
点评:主要考查图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a-b+c,然后根据图象判断其值.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
| x | -0.1 | -0.2 | -0.3 | -0.4 |
| y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |