题目内容
点P是△ABC中AB边上的一点,过P作直线(不与AB重合)截△ABC,使截得的三角形与原三角形相似,满足条件的直线最多有 条
如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AB于D,交AC于E,且EC=5,则AE的长为 .
分解因式:(1)9ax2﹣ay2; (2)2x3y+4x2y2+2xy3.
下列计算正确的是( )
A. 3x+5y=8xy B. (﹣x3)3=x6 C. x6÷x3=x2 D. x3•x5=x8
如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.
(1)求反比例函数的解析式;
(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.
关于二次函数y=2x2﹣mx+m﹣2,以下结论:
①抛物线交x轴有交点;
②不论m取何值,抛物线总经过点(1,0);
③若m>6,抛物线交x轴于A、B两点,则AB>1;
④抛物线的顶点在y=﹣2(x﹣1)2图象上.其中正确的序号是( )
A. ①②③④ B. ①②③ C. ①②④ D. ②③④
A. (a+2)(a﹣2)=a2﹣2 B. (a+1)(a﹣2)=a2+a﹣2
C. (a+b)2=a2+b2 D. (a﹣b)2=a2﹣2ab+b2
如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)∠PBD的度数为 ,点D的坐标为 (用t表示);
(2)当t为何值时,△PBE为等腰三角形?
(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.
将抛物线y=(x+1)2+1向左平移2个单位长度,所得新抛物线的函数解析式为_____.