题目内容
已知:,则代数式的值为________.
分别写出下列二次函数的对称轴和顶点坐标.
(1) ;
(2) .
我市南湖生态城某楼盘准备以每平方米元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米元的均价开盘销售.
求平均每次下调的百分率;
王先生准备以开盘价均价购买一套平方米的住房,开发商给予以下两种优惠方案:
①打折销售;
②不打折,一次性送装修费每平方米元,试问那种方案更优惠?
如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有( )
A. △ADE∽△ECF B. △ECF∽△AEF
C. △ADE∽△AEF D. △AEF∽△ABF
(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
某商品原来的售价为每件元,经过连续两次降价后,售价为元,则平均每次降价的百分率为________.
设,,且,则的值是( )
A. B. C. D.
如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为 米.
如图,已知,以为直径,为圆心的半圆交于点,点为弧的中点,连接交于点,为的角平分线,且,垂足为点.
判断直线与的位置关系,并说明理由;
若,,求的长.