题目内容

已知菱形ABCD的边长为6,对角线AC与BD相交于点O,OE⊥AB,垂足为点E,AC=4,那么sin∠AOE=________.


分析:菱形对角线互相垂直,故AC⊥BD,根据∠OAE=∠BAO,∠OEA=∠AOB可以判定△OAE∽△ABO,∴∠AOE=∠BAO,根据AO和AB的值即可求得sin∠AOE的值.
解答:∵菱形对角线互相垂直,
∴∠OEA=∠AOB,
∵∠OAE=∠BAO,
∴△OAE∽△ABO,
∴∠AOE=∠ABO,
∵AO=AC=2,AB=6,
∴sin∠AOE=sin∠ABO==
故答案为:
点评:本题考查了相似三角形的求证和对应角相等的性质,三角形中正弦函数的计算,菱形对角线垂直平分的性质,本题中求证∠AOE=∠ABO是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网