ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÖ±Ïßy=-x+2Óë×ø±êÖá½»ÓÚA¡¢BÁ½µã£¬µãPÔÚxÖáÉÏ£®£¨1£©ÇóA¡¢BÁ½µãµÄ×ø±ê£»
£¨2£©Ô²¡ÑP°ë¾¶r=
£¨3£©µ±¡ÑPÓëÖ±ÏßABÏàÇÐʱ£¬Ç¡ÓÐÒ»Ìõ¶¥µã×ø±êΪC£¨2£¬2£©µÄÅ×ÎïÏßy=ax2+bx+c¾¹ýÔ²ÐÄP£¬Èô¸ÃÅ×ÎïÏßÓëxÖáµÄÁ½¸ö½»µãÖÐÓұߵĽ»µãΪM£¬ÔÚxÖáÉÏ·½Í¬Ê±Ò²ÔÚÖ±ÏßABÉÏ·½µÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÒ»µãQ£¬Ê¹ËıßÐÎABMQµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬ÇëÇó³öÕâ¸ö×î´óÃæ»ý£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©Ö±ÏßABµÄ½âÎöʽÖУ¬Áîx=0£¬¿ÉÇóµÃµãAµÄ×ø±ê£»Áîy=0£¬¿ÉÇóµÃµãBµÄ×ø±ê£®
£¨2£©ÓÉÓÚµãPµÄλÖò»È·¶¨£¬ÄÇôÐèÒª¿¼ÂÇÁ½ÖÖÇé¿ö£º¢ÙµãPÔÚÖ±ÏßAB×ó²à¡¢¢ÚµãPÔÚÖ±ÏßABÓҲࣻ½âÌâµÄ·½·¨´óÖÂÏàͬ£¬¹ýÔ²ÐÄ×÷Ö±ÏßABµÄ´¹Ïߣ¬ÔÚ¹¹½¨µÄÖ±½ÇÈý½ÇÐÎÖУ¬¸ù¾ÝÔ²µÄ°ë¾¶ºÍÖ±½ÇÈý½ÇÐÎÖеÄÌØÊâ½Ç£¬¼´¿ÉÈ·¶¨Ô²ÐÄPµÄ×ø±ê£®
£¨3£©Ê×ÏÈÀûÓôý¶¨ÏµÊý·¨È·¶¨Å×ÎïÏߵĽâÎöʽ£¬½ø¶øÓÃδ֪Êý±íʾµãMµÄ×ø±ê£»ÓÉͼ¿ÉÖª£ºËıßÐÎABMQµÄÃæ»ý¿ÉÓÉËıßÐÎAOMQºÍ¡÷ABOµÄÃæ»ý²îÇóµÃ£¬Óɴ˵õ½¹ØÓÚËıßÐÎABMQµÄÃæ»ýºÍMµãºá×ø±êµÄº¯Êý¹ØÏµ£¬Óɺ¯ÊýµÄÐÔÖÊ¿ÉÅжÏËıßÐÎABMQÊÇ·ñ´æÔÚ×î´óÃæ»ý£®
½â´ð£º
½â£º£¨1£©µ±x=0ʱ£¬y=2£»µ±y=0ʱ£¬x=2£®
ËùÒÔA£¨0£¬2£©£¬B£¨2£¬0£©£®
£¨2£©µ±¡ÑP´Ó×óÏòÓÒÔ˶¯Ê±¡ÑPÓëÖ±ÏßABÓÐÁ½ÖÖÏàÇÐÇé¿ö£®
µÚÒ»ÖÖÇé¿ö£ºÈçͼ£¬µ±¡ÑPÔÚÖ±ÏßABµÄ×ó²àÓëÖ±ÏßABÏàÇÐʱ£¬¹ýÇеãD1×÷D1P1¡ÍxÖáÓÚP1£¬
ÔÚRt¡÷D1P1BÖУ¬¡ÏOBD1=45°£¬D1P1=
£®
ËùÒÔBP1=2£¬Ç¡ºÃP1ÓëOµãÖØºÏ£¬×ø±êΪ£¨0£¬0£©£®
µÚ¶þÖÖÇé¿ö£ºÈçͼ£¬µ±¡ÑPÔÚÖ±ÏßABµÄÓÒ²àÓëÖ±ÏßABÏàÇÐʱ£¬¹ýÇеãD2×÷D2P2¡ÍxÖáÓëP2£¬
ÔÚRt¡÷D2P2BÖУ¬¡ÏP2BD2=45°£¬D2P2=
£¬
ËùÒÔBP2=2£¬OP2=4£¬¼´PµãµÄ×ø±êΪ£¨4£¬0£©£®
£¨3£©Èçͼ£¨3£©Å×ÎïÏßy=ax2+bx+c¹ýÔµãO£¬ÇÒ¶¥µã×ø±êΪ£¨2£¬2£©£®
¿ÉÉèy=a£¨x-2£©2+2£¬µ±x=0ʱy=0£¬
ÇóµÃa=-
£¬ËùÒÔy=-
x2+2x£®
ÉèÔÚxÖáÉÏ·½µÄÅ×ÎïÏßÉÏ´æÔÚµãQʹËıßÐÎABMQµÄÃæ»ý×î´ó£¬µãQ×ø±êΪ£¨m£¬-
m2+2m£©£¬Á¬½ÓOQ£¬ÓÉÌâÒâµÃ
SËıßÐÎABMQ=S¡÷AOQ+S¡÷OMQ-S¡÷AOB
=
m×2+
×4×£¨-
m2+2m£©-
×2×2
=-m2+5m-2=-£¨m-
£©2+
£®
µ±m=
ʱ£¬SËıßÐÎABMQµÄ×î´óֵΪ
£®
¾¼ìÑ飬µãQ£¨
£¬
£©ÔÚÖ±ÏßABÉÏ·½£¬ËùÒÔ£¬ÔÚxÖáÉÏ·½Í¬Ê±Ò²ÔÚÖ±ÏßABÉÏ·½µÄÅ×ÎïÏßÉÏ´æÔÚµãQʹËıßÐÎABMQµÄÃæ»ý×î´ó£¬SËıßÐÎABMQµÄ×î´óֵΪ
£®
µãÆÀ£º¸ÃÌ⿼²éÁ˺¯Êý½âÎöʽµÄÈ·¶¨¡¢Ô²ÓëÖ±ÏßµÄλÖùØÏµ¡¢Í¼ÐÎÃæ»ýµÄ½â·¨µÈ×ÛºÏ֪ʶ£®£¨2£©ÌâÔÚ½â´ðʱ£¬PµãµÄÁ½ÖÖλÖÃÊÇÈÝÒ×±»ºöÊӵĵط½£®
£¨2£©ÓÉÓÚµãPµÄλÖò»È·¶¨£¬ÄÇôÐèÒª¿¼ÂÇÁ½ÖÖÇé¿ö£º¢ÙµãPÔÚÖ±ÏßAB×ó²à¡¢¢ÚµãPÔÚÖ±ÏßABÓҲࣻ½âÌâµÄ·½·¨´óÖÂÏàͬ£¬¹ýÔ²ÐÄ×÷Ö±ÏßABµÄ´¹Ïߣ¬ÔÚ¹¹½¨µÄÖ±½ÇÈý½ÇÐÎÖУ¬¸ù¾ÝÔ²µÄ°ë¾¶ºÍÖ±½ÇÈý½ÇÐÎÖеÄÌØÊâ½Ç£¬¼´¿ÉÈ·¶¨Ô²ÐÄPµÄ×ø±ê£®
£¨3£©Ê×ÏÈÀûÓôý¶¨ÏµÊý·¨È·¶¨Å×ÎïÏߵĽâÎöʽ£¬½ø¶øÓÃδ֪Êý±íʾµãMµÄ×ø±ê£»ÓÉͼ¿ÉÖª£ºËıßÐÎABMQµÄÃæ»ý¿ÉÓÉËıßÐÎAOMQºÍ¡÷ABOµÄÃæ»ý²îÇóµÃ£¬Óɴ˵õ½¹ØÓÚËıßÐÎABMQµÄÃæ»ýºÍMµãºá×ø±êµÄº¯Êý¹ØÏµ£¬Óɺ¯ÊýµÄÐÔÖÊ¿ÉÅжÏËıßÐÎABMQÊÇ·ñ´æÔÚ×î´óÃæ»ý£®
½â´ð£º
ËùÒÔA£¨0£¬2£©£¬B£¨2£¬0£©£®
£¨2£©µ±¡ÑP´Ó×óÏòÓÒÔ˶¯Ê±¡ÑPÓëÖ±ÏßABÓÐÁ½ÖÖÏàÇÐÇé¿ö£®
µÚÒ»ÖÖÇé¿ö£ºÈçͼ£¬µ±¡ÑPÔÚÖ±ÏßABµÄ×ó²àÓëÖ±ÏßABÏàÇÐʱ£¬¹ýÇеãD1×÷D1P1¡ÍxÖáÓÚP1£¬
ÔÚRt¡÷D1P1BÖУ¬¡ÏOBD1=45°£¬D1P1=
ËùÒÔBP1=2£¬Ç¡ºÃP1ÓëOµãÖØºÏ£¬×ø±êΪ£¨0£¬0£©£®
µÚ¶þÖÖÇé¿ö£ºÈçͼ£¬µ±¡ÑPÔÚÖ±ÏßABµÄÓÒ²àÓëÖ±ÏßABÏàÇÐʱ£¬¹ýÇеãD2×÷D2P2¡ÍxÖáÓëP2£¬
ÔÚRt¡÷D2P2BÖУ¬¡ÏP2BD2=45°£¬D2P2=
ËùÒÔBP2=2£¬OP2=4£¬¼´PµãµÄ×ø±êΪ£¨4£¬0£©£®
¿ÉÉèy=a£¨x-2£©2+2£¬µ±x=0ʱy=0£¬
ÇóµÃa=-
ÉèÔÚxÖáÉÏ·½µÄÅ×ÎïÏßÉÏ´æÔÚµãQʹËıßÐÎABMQµÄÃæ»ý×î´ó£¬µãQ×ø±êΪ£¨m£¬-
SËıßÐÎABMQ=S¡÷AOQ+S¡÷OMQ-S¡÷AOB
=
=-m2+5m-2=-£¨m-
µ±m=
¾¼ìÑ飬µãQ£¨
µãÆÀ£º¸ÃÌ⿼²éÁ˺¯Êý½âÎöʽµÄÈ·¶¨¡¢Ô²ÓëÖ±ÏßµÄλÖùØÏµ¡¢Í¼ÐÎÃæ»ýµÄ½â·¨µÈ×ÛºÏ֪ʶ£®£¨2£©ÌâÔÚ½â´ðʱ£¬PµãµÄÁ½ÖÖλÖÃÊÇÈÝÒ×±»ºöÊӵĵط½£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿