题目内容

【题目】一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.
(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”);
(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是
(3)在一个摸球游戏中,所有可能出现的结果如下:

根据树状图呈现的结果,求两次摸出的球颜色不同的概率.

【答案】
(1)

解:(1)当n=1时,红球和白球的个数一样,所以被摸到的可能性相同,

故答案为:相同;


(2)2
(3)

由树状图可知,共有12种结果,其中两次摸出的球颜色不同的10种,

所以其概率==


【解析】(1)因为红球和白球的个数一样,所以被摸到的可能性相同;
(2)根据摸到绿球的频率稳定于0.25,即可求出n的值;
(3)根据树状图即可求出两次摸出的球颜色不同的概率.
【考点精析】根据题目的已知条件,利用列表法与树状图法和用频率估计概率的相关知识可以得到问题的答案,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率;在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网