题目内容

某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。
(1)若该起市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?
(2)该超市为使甲、乙两种商品共80元的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案。
解:(1)商品进了x件,则乙种商品进了80-x件,依题意得
10x+(80-x)×30=1600
解得:x=40
即甲种商品进了40件,乙种商品进了80-40=40件。
(2)设购买甲种商品为x件,则购买乙种商品为(80-x)件,依题意可得:
600≤(15-10)x+(40-30)(80-x)≤610
解得:38≤x≤40
即有三种方案,分别为甲38件,乙42件或甲39件,乙41件或甲40件,乙40件。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网