题目内容
| A、4 | B、3 | C、2 | D、1 |
分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:解:如图:
①当x=1时,y=a+b+c>0,正确;
②当x=-1时,y=a-b+c<0,正确;
③对称轴为x=-
=-1,b=2a,正确;
④抛物线与x轴有两个交点,b2-4ac>0,正确;
⑤由抛物线的开口向上知a>0,
与y轴的交点为在y轴的负半轴上,c<0,
对称轴为x=-
=-1,得2a=b,a、b同号,即b>0,
因此abc<0,错误.
故选A.
①当x=1时,y=a+b+c>0,正确;
②当x=-1时,y=a-b+c<0,正确;
③对称轴为x=-
| b |
| 2a |
④抛物线与x轴有两个交点,b2-4ac>0,正确;
⑤由抛物线的开口向上知a>0,
与y轴的交点为在y轴的负半轴上,c<0,
对称轴为x=-
| b |
| 2a |
因此abc<0,错误.
故选A.
点评:此题考查了点与函数的关系,考查了二次函数的对称轴、二次函数y=ax2+bx+c系数符号的确定.
练习册系列答案
相关题目
①a+b+c>0 ②a-b+c<0 ③abc<0 ④b=2a ⑤b>0.
| A、5个 | B、4个 | C、3个 | D、2个 |