题目内容

解下列方程:
(1)x2-2x-3=0
(2)(x-1)(x+2)=4
(3)2x2-4x-5=0
(4)(x-1)2-2x(x-1)=0.
分析:(1)利用因式分解法解一元二次方程,将-3分解为-3×1,即可得出;
(2)去括号、移项、合并同类项,然后利用十字相乘即可得出答案;
(3)利用配方法首先二次项系数画一,再进行移项配方即可;
(4)直接提取公因式(x-1),因式分解即可得出答案.
解答:解:(1)x2-2x-3=0,
∴(x-3)(x+1)=0,
∴x-3=0或x+1=0,
∴x1=3,x2=-1.
(2)(x-1)(x+2)=4,
去括号得:
x2+x-2=4,
∴x2+x-6=0,
∴(x-2)(x+3)=0,
∴x-2=0或x+3=0,
∴x1=2,x2=-3,
(3)2x2-4x-5=0,
配方得:(x-1)2=
5
2
+1,
∴(x-1)2=
7
2

∴x-1=±
14
2

∴x1=1+
14
2
=
2+
14
2
,x2=1-
14
2
=
2-
14
2

(4)(x-1)2-2x(x-1)=0.
提取公因式(x-1)得:
(x-1)[(x-1)-2x]=0,
∴(x-1)(-x-1)=0,
∴x-1=0或-x-1=0,
∴x1=1,x2=-1.
点评:此题主要考查了因式分解法和配方法解一元二次方程,只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网