题目内容
对反比例函数y=
,下列说法不正确的是( )
| 4 |
| x |
| A、它的图象在第一、三象限 |
| B、点(-1,-4)在它的图象上 |
| C、当x<0时,y随x的增大而减小 |
| D、当x>0时,y随x的增大而增大 |
分析:根据反比例函数的性质用排除法解答.
解答:解:A、∵k=4>0,∴图象在第一、三象限,正确,故本选项不符合题意;
B、当x=-1时,y=
=-4,正确,故本选项不符合题意;
C、∵k=4>0,∴当x<0时,y随x的增大而减小,正确,故本选项不符合题意;
D、∵k=4>0,∴当x>0时,y随x的增大而减小,错误,故本选项符合题意.
故选D.
B、当x=-1时,y=
| 4 |
| x |
C、∵k=4>0,∴当x<0时,y随x的增大而减小,正确,故本选项不符合题意;
D、∵k=4>0,∴当x>0时,y随x的增大而减小,错误,故本选项符合题意.
故选D.
点评:本题主要考查了反比例函数y=
(k≠0)的性质:
①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
| k |
| x |
①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
练习册系列答案
相关题目
某种植基地对去年瓜果生产基地的甲、乙两种瓜果的生产销售进行了统计,发现去年1至12月每千克甲种瓜果的销售价格y1(元)与月份x(1≤x≤12,x为整数)之间存在如图所示变化趋势,每千克乙种瓜果销售价格y2(元)与月份x(1≤x≤12,x为整数)之间的函数关系如下表:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y2与x之间的函数关系式,根据如图所示的变化趋势,求出y1与x之间满足的一次函数关系式;
(2)若去年每千克甲种瓜果生产成本为2.5元,每千克乙种瓜果生产成本为2元,且去年1至12月甲种瓜果销售量p1(万千克)与月份x满足关系式p1=0.2x+1(1≤x≤12,x为整数),去年1至12月乙种瓜果销售量p2(万千克)与月份x满足关系式p2=0.4x+0.8(1≤x≤12,x为整数),求去年上半年哪一个月同时出售甲、乙两种瓜果的总利润最大?并求出其最大利润;
(3)预计今年1至5月,受物价上涨因素的影响,该基地甲种瓜果生产成本每千克比去年增加20%,乙种瓜果的生产成本每千克比去年增加1元,而甲种瓜果每千克售价在去年12月份的基础上提高m%,乙种瓜果每千克售价在去年12月份的基础上提高1.2m%,与此同时,每月甲种瓜果的销售量均在去年12月份的基础上减少3m%,每月乙种瓜果的销售量均在去年12月份的基础上减少了2m%,这样,预计今年1至5月销售乙种瓜果获得的总利润比1至5月销售甲种瓜果获得的总利润多40万元,请参考以下数据,估算m的整数值(m≤10).
(参考数据:322=1024,332=1089,342=1156,352=1225)
| 月份x | 1 | 2 | 3 | 4 | … |
| 销售价格y2(元) | 7.75 | 7.5 | 7.25 | 7 | … |
(2)若去年每千克甲种瓜果生产成本为2.5元,每千克乙种瓜果生产成本为2元,且去年1至12月甲种瓜果销售量p1(万千克)与月份x满足关系式p1=0.2x+1(1≤x≤12,x为整数),去年1至12月乙种瓜果销售量p2(万千克)与月份x满足关系式p2=0.4x+0.8(1≤x≤12,x为整数),求去年上半年哪一个月同时出售甲、乙两种瓜果的总利润最大?并求出其最大利润;
(3)预计今年1至5月,受物价上涨因素的影响,该基地甲种瓜果生产成本每千克比去年增加20%,乙种瓜果的生产成本每千克比去年增加1元,而甲种瓜果每千克售价在去年12月份的基础上提高m%,乙种瓜果每千克售价在去年12月份的基础上提高1.2m%,与此同时,每月甲种瓜果的销售量均在去年12月份的基础上减少3m%,每月乙种瓜果的销售量均在去年12月份的基础上减少了2m%,这样,预计今年1至5月销售乙种瓜果获得的总利润比1至5月销售甲种瓜果获得的总利润多40万元,请参考以下数据,估算m的整数值(m≤10).
(参考数据:322=1024,332=1089,342=1156,352=1225)