题目内容

【题目】定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )

A.a=c B.a=b C.b=c D.a=b=c

【答案】A

【解析】

试题分析:因为方程有两个相等的实数根,所以根的判别式=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.

解:一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,

∴△=b2﹣4ac=0,

又a+b+c=0,即b=﹣a﹣c,

代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,

即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,

a=c

故选A

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网