题目内容
【题目】定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )
A.a=c B.a=b C.b=c D.a=b=c
【答案】A
【解析】
试题分析:因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.
解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,
∴△=b2﹣4ac=0,
又a+b+c=0,即b=﹣a﹣c,
代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,
即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,
∴a=c.
故选A
练习册系列答案
相关题目
【题目】2015年小红在单位七个月奖金的变化情况如表:(正数表示比前一月多的钱数,负数表示比前一月少的钱数,单位:元)
月份 | 一月 | 二月 | 三月 | 四月 | 五月 | 六月 | 七月 |
钱数变化 | +300 | +220 | ﹣150 | ﹣100 | +330 | +200 | +280 |
(1)若2014年底12月份奖金定为a元,用代数式表示2015年二月的奖金;
(2)请判断七个月以来小红得到奖金最多是哪个月?最少是哪个月?它们相差多少元?
(3)若2015年这七个月中小红最多得到的奖金是2800元,请问2014年12月份她得到多少奖金?