题目内容
11.| A. | 35° | B. | 40° | C. | 45° | D. | 50° |
分析 根据三角形内角和定理求出∠C+∠B=70°,根据线段垂直平分线的性质得到EC=EA,FB=FA,根据等腰三角形的性质得到∠EAC=∠C,∠FAB=∠B,计算即可.
解答 解:∵∠BAC=110°,
∴∠C+∠B=70°,
∵EG、FH分别为AC、AB的垂直平分线,
∴EC=EA,FB=FA,
∴∠EAC=∠C,∠FAB=∠B,
∴∠EAC+∠FAB=70°,
∴∠EAF=40°,
故选:B.
点评 此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
练习册系列答案
相关题目
20.下列汽车标志的图形是中心对称图形的是( )
| A. | B. | C. | D. |
1.下列各式是最简分式的是( )
| A. | $\frac{{{x^2}-4{y^2}}}{{{{(x+2y)}^2}}}$ | B. | $\frac{-2ab}{{9{a^3}}}$ | C. | $\frac{{{x^2}+{y^2}}}{x+y}$ | D. | $\frac{{{x^2}+x}}{{{x^2}-1}}$ |