题目内容

如图,AB为⊙O的直径,弦CD⊥AB,垂足为点M,AE切⊙O于点A,交BC的延长线于点E,连接AC.求证:AE2=EB•EC.

证明:∵AE切⊙O于点A,AB为⊙O的直径,
∴∠BAE=90°,∠ACE=∠ACB=90°,
∴∠ACE=∠BAE=90°.
又∵∠E=∠E,
∴Rt△ECA∽Rt△EAB,

∴AE2=EB•EC.
分析:由于AE是切线,利用弦切角定理可知∠EAC=∠EBA,再加上一对公共角,容易证出△EAC∽△EBA,那么可得比例线段,即可证.
点评:本题考查了切线的性质,相似三角形的判定和性质等知识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网