题目内容
若正多边形的一个内角等于120°,则这个正多边形的边数是 .
已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于( )
A.﹣5 B.5 C.﹣9 D.9
若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为 .
在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.
(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;
(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,
(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.
如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为 .
如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为( )
A. B.2 C. D.
( 本小题满分12分)如图,已知以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D, 点F为BC的中点,连接EF.
⑴求证: EF是⊙O的切线;
⑵若AD的长,∠EAC=60°,求①⊙O的半径;②求图中阴影部分的面积(保留π及根号).
分解因式:a2﹣9= .
方程(x﹣5)(2x﹣1)=3的根的判别式b2﹣4ac= .