题目内容

如图,B、C、D、E在同一直线上,BC=AD=AC=DE,则图中等腰三角形共有


  1. A.
    3个
  2. B.
    4个
  3. C.
    5个
  4. D.
    6个
B
分析:首先根据BC=AD=AC=DE可得到△ABC,△ADE,△ACD是等腰三角形,再证明△ACB≌△ADE,可得到AB=AE,进而得到△ABE是等腰三角形.
解答:∵BC=AC,
∴△ACB是等腰三角形,
∵AD=AC,
∴△ACD是等腰三角形,
∵AD=DE,
∴△ADE是等腰三角形,
∵△ACD是等腰三角形,
∴∠ACD=∠ADC,
∴∠ACB=∠ADE,
在△ACB和△ADE中:
∴△ACB≌△ADE(SAS),
∴AB=AE,
∴△ABE是等腰三角形,
故选:B.
点评:此题主要考查了等腰三角形的判定,全等三角形的判定与性质,题目比较简单,关键是把握好等腰三角形的判定方法即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网