题目内容
在Rt△ABC中,AC=3,BC=4.如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,那么半径r的取值范围是 .
【答案】分析:根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.
解答:
解:过点C作CD⊥AB于点D,
∵AC=3,BC=4.如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,
∴AB=5,
当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,圆与斜边AB只有一个公共点,
∴CD×AB=AC×BC,
∴CD=r=
,
当直线与圆如图所示也可以有一个交点,
∴3<r≤4,
故答案为:3<r≤4或
.
点评:此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.
解答:
∵AC=3,BC=4.如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,
∴AB=5,
当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,圆与斜边AB只有一个公共点,
∴CD×AB=AC×BC,
∴CD=r=
当直线与圆如图所示也可以有一个交点,
∴3<r≤4,
故答案为:3<r≤4或
点评:此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.
练习册系列答案
相关题目
在Rt△ABC中,已知a及∠A,则斜边应为( )
| A、asinA | ||
B、
| ||
| C、acosA | ||
D、
|
| A、9:4 | B、9:2 | C、3:4 | D、3:2 |