题目内容
已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )
A. (﹣1,0) B. (4,0) C. (5,0) D. (﹣6,0)
下列各组数可能是一个三角形的边长的是
A. 1,2,4 B. 4,5,9 C. 4,6,8 D. 5,5,11
已知在数轴上A点表示数﹣2,B点表示数6,则AB的中点M在数轴上所对应的数_______
某商店以15元/件的价格购进一批纪念品销售,经过市场调查发现:若每件卖20元,则每天可以售出50件,且售价每提高1元,每天的销量会减少2件,于是该商店决定提价销售,设售价x元件,每天获利y元.
(1)求每件售价为多少元时,每天获得的利润最大?最大利润是多少?
(2)若该商店雇用人员销售,在营销之前,对支付给销售人员的工资有如下两种方案:
方案一:每天支付销售工资100元,无提成;
方案二:每销售一件提成2元,不再支付销售工资.
综合以上所有信息,请你帮着该商店老板算一算,应该采用哪种支付方案,才能使该商店每天销售该纪念品的利润最大?最大利润是多少?
抛物线y=ax2+bx+c经过A(﹣2,4),B(6,4)两点,且顶点在x轴上,则该抛物线解析式为_____.
如图,抛物线与x轴一个交点为,对称轴为直线,则时x的范围是
A. 或 B.
C. D.
密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××
小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是 .
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;
(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.
因式分解x﹣4x3的最后结果是( )
A. x(1﹣2x)2 B. x(2x﹣1)(2x+1) C. x(1﹣2x)(2x+1) D. x(1﹣4x2)
如图,ΔP1OA1,ΔP2A1A2是等腰直角三角形,点P1、P2在函数y=(x>0)的图象上,斜边OA1、A1A2都在x轴上,则点A2的坐标是____________.