题目内容

【题目】若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在01之间(不含01),则a的取值范围是(

Aa3 Ba3 Ca﹣3 Da﹣3

【答案】B

【解析】

试题分析:根据题意可知,当x=0时,函数y=ax2+2x﹣5=﹣5;当x=1时,函数y=a+2﹣5=a﹣3.因为关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在01之间(不含01),所以当x=1时,函数图象必在x轴的上方,所以得到关于a的不等式,解不等式即可求出a的取值范围.

解:依题意得:

x=0时,函数y=ax2+2x﹣5=﹣5

x=1时,函数y=a+2﹣5=a﹣3

又关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在01之间(不含01),

所以当x=1时,函数图象必在x轴的上方,

所以y=a﹣30

a3

故选B

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网