题目内容
如图,已知AB∥CD,OA、OC分别平分∠BAC和∠ACD,OE⊥AC于点E,且OE=2,则AB、CD之间的距离为
- A.2
- B.4
- C.6
- D.8
B
分析:要求二者的距离,首先要作出二者的距离,作OF⊥AB,OG⊥CD,根据角平分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.
解答:
解:作OF⊥AB,延长FO与CD交于G点,
∵AB∥CD,∴FG垂直CD,
∴FG就是AB与CD之间的距离.
∵∠ACD平分线的交点,OE⊥AC交AC于E,
∴OE=OF=OG,
∴AB与CD之间的距离等于2OE=4.
故选B.
点评:本题主要考查角平分线上的点到角两边的距离相等的性质,作出AB与CD之间的距离是正确解决本题的关键.
分析:要求二者的距离,首先要作出二者的距离,作OF⊥AB,OG⊥CD,根据角平分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.
解答:
∵AB∥CD,∴FG垂直CD,
∴FG就是AB与CD之间的距离.
∵∠ACD平分线的交点,OE⊥AC交AC于E,
∴OE=OF=OG,
∴AB与CD之间的距离等于2OE=4.
故选B.
点评:本题主要考查角平分线上的点到角两边的距离相等的性质,作出AB与CD之间的距离是正确解决本题的关键.
练习册系列答案
相关题目